3,061 research outputs found

    Spin-Peierls and Antiferromagnetic Phases in Cu{1-x}Zn{x}GeO{3}: A Neutron Scattering Study

    Full text link
    Comprehensive neutron scattering studies were carried out on a series of high-quality single crystals of Cu_{1-x}Zn_xGeO_3. The Zn concentration, x, was determined for each sample using Electron Probe Micro-Analysis. The measured Zn concentrations were found to be 40-80% lower than the nominal values. Nevertheless the measured concentrations cover a wide range which enables a systematic study of the effects due to Zn-doping. We have confirmed the coexistence of spin-Peierls (SP) and antiferromagnetic (AF) orderings at low temperatures and the measured phase diagram is presented. Most surprisingly, long-range AF ordering occurs even in the lowest available Zn concentration, x=0.42%, which places important constraints on theoretical models of the AF-SP coexistence. Magnetic excitations are also examined in detail. The AF excitations are sharp at low energies and show no considerable broadening as x increases indicating that the AF ordering remains long ranged for x up to 4.7%. On the other hand, the SP phase exhibits increasing disorder as x increases, as shown from the broadening of the SP excitations as well as the dimer reflection peaks.Comment: 17 preprint style pages, 9 postscript files included. Submitted to Phys. Rev. B. Also available from http://insti.physics.sunysb.edu/~mmartin/pubs.htm

    Rhythmic Motion of a Droplet under a DC Electric Field

    Get PDF
    The effect of a stationary electric field on a water droplet with a diameter of several tens micrometers in oil was examined. Such a droplet exhibits repetitive translational motion between the electrodes in a spontaneous manner. The state diagram of this oscillatory motion was deduced; at 0-20 V the droplet is fixed at the surface of the electrode, at 20-70 V the droplet exhibits small-amplitude oscillatory motion between the electrodes, and at 70-100 V the droplet shows large-amplitude periodic motion between the electrodes. The observed rhythmic motion is explained in a semi-quantitative manner by using differential equations, which includes the effect of charging the droplet under an electric field. We also found that twin droplets exhibit synchronized rhythmic motion between the electrodes

    Aging and fluctuation-dissipation ratio in a nonequilibrium qq-state lattice model

    Full text link
    A generalized version of the nonequilibrium linear Glauber model with qq states in dd dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the qq states. Exact expressions for the two-time autocorrelation and response functions on a dd-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model

    Spin Defects in Spin-Peierls Systems

    Full text link
    We examine spin-Peierls systems in the presence of spin defects which are introduced by replacing magnetic ions Cu2+Cu^{2+} with non-magnetic ones Zn2+Zn^{2+} in CuGeO3CuGeO_3. By using the action for the bosonized Hamiltonian, it is shown directly that the antiferromagnetic state induced by the spin defects coexists with the spin-Peierls states. Further the doping dependences of both transition temperature of spin-Peierls state and the spin gap have been calculated. The transition temperature of the present estimation shows good agreement quantitatively with that observed in Cu_{1-\de} Zn_\de O_3 for the region of the doping rate, \de<0.02.Comment: jpsj style, 11 pages, 2 figure

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=138J_1 = -138 K and J2=51J_2 = 51 K (αJ2/J1=0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Replica-symmetric solutions of a dilute Ising ferromagnet in a random field

    Full text link
    We use the replica method in order to obtain an expression for the variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions. In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the paramagnetic solution is fully stable in a sufficiently large random field
    corecore